Code:		Course Title:	
MscTI AQC		Applied Quantum Computing	
Module Coordinator:		Type:	
JProf. Dr. Marko Rančić		Lecture with exercises	
Credit points:	Workload:	Teaching Hours:	Term:
?	180h	4 / week	ST
Module Parts and	Teaching Methods		~ 1
• Lecture (3-2 h / week)			
• Practical exercises with homework (1-2 h / week)			
Objectives:			
By the end of this lecture, the students will be able to:			
• Understand the benefits which quantum computing brings to classical			
computing			
• Understand the main bottlenecks of modern quantum computing			
Name most common approaches to quantum computing			
• Get extensive hands on experience and theoretical understanding of main			
quantum computing algorithms			
Content:			
Introduction to quantum mechanics			
Introduction to quantum meenances Introduction to quantum computing			
Quantum noise			
• Quantum noise • Quantum computing approaches: Universal Quantum computing, NISQ			
Quantum computing approaches: Oniversal Quantum computing, 1415Q Quantum computing and Quantum Annealing,			
Main architectures: Superconducting, Photonic, Trapped Ions, Spin qubits			
Main arenneetares. Superconducting, Photome, Trapped Ions, Spin quotes			
Universal quantum computing algorithms:			
Shor's algorithm			
• Grover's algorithm			
• HHL algorithm			
Quantum phase estimation			
Zuantum phase estimation			
Noisy-intermediate scale algorithms:			
Variational Quantum Eigensolver (VQE)			
• Imaginary time e	- · ·	<)	
Quantum Approximate Optimization algorithm (QAOA)			
Quantum Approximate Optimization argorithm (QAOA)			
• Quantum annealing			
Prerequisites:		Recommended Knowledge:	
none			0
noneBasic Computer ArchitectureLiterature:			
• Lecture Notes and Handouts			
• A list of sources that will be provided in the course			
Testing: Defined by the lecturer before the beginning of the course			
resung. Defined by the recturer before the beginning of the course			